
Dragonblood: A Security Analysis of WPA3’s SAE Handshake
Mathy Vanhoef

New York University Abu Dhabi

Mathy.Vanhoef@nyu.edu

Eyal Ronen

Tel Aviv University and KU Leuven

eyal.ronen@cs.tau.ac.il

ABSTRACT
TheWPA3 certification aims to secureWi-Fi networks, and provides

several advantages over its predecessor WPA2, such as protection

against offline dictionary attacks and forward secrecy. Unfortu-

nately, we show that WPA3 is affected by several design flaws,

and analyze these flaws both theoretically and practically. Most

prominently, we show that WPA3’s Simultaneous Authentication

of Equals (SAE) handshake, commonly known as Dragonfly, is af-

fected by password partitioning attacks. These attacks resemble

dictionary attacks and allow an adversary to recover the password

by abusing timing or cache-based side-channel leaks. Our side-

channel attacks target the protocol’s password encoding method.

For instance, our cache-based attack exploits SAE’s hash-to-curve

algorithm. The resulting attacks are efficient and low cost: brute-

forcing all 8-character lowercase password requires less than 125$

in Amazon EC2 instances. In light of ongoing standardization ef-

forts on hash-to-curve, Password-Authenticated Key Exchanges

(PAKEs), and Dragonfly as a TLS handshake, our findings are also

of more general interest. Finally, we discuss how to mitigate our

attacks in a backwards-compatible manner, and explain how minor

changes to the protocol could have prevented most of our attacks.

1 INTRODUCTION
The Wi-Fi Alliance recently announced WPA3 as the more secure

successor of WPA2. Unfortunately, it was created without public

review, meaning experts could not critique any of WPA3’s new

features before they were released. Moreover, although the new

handshake of WPA3 was designed in an open manner, its security

guarantees are unclear. On one hand there is a security proof of

a close variant of WPA3’s handshake [59], but on the other hand

another close variant of the handshake received significant criticism

during its standardization [68, 79]. These issues raise the question

whether WPA3 is secure in practice.

We remark that WPA3 does not define new protocols, but in-

stead mandates which existing protocols a device must support.

This means WPA3 is not a specification, but a certification. Put

differently, devices can now become WPA3-certified, which assures

they implement certain protocols in an interoperable manner. The

only novelty in the WPA3 certification is a transition mode where

WPA2 and WPA3 are simultaneously supported for backward com-

patibility (see Section 2.2). Although WPA3 follows recommended

practice by using existing standards, we believe more openness to

alternative protocols could have increased its security.

In this paper we perform a security analysis of WPA3’s Simul-

taneous Authentication of Equals (SAE) handshake. This hand-

shake is designed to prevent dictionary attacks, and constitutes the

biggest improvement over WPA2. We systematically analyzed its

security by reading specifications, inspecting formal proofs, and au-

diting open-source implementations. This analysis revealed several

design and implementation flaws. For instance, when verifying the

assumptions made by the formal proof of the SAE handshake [59],

we discovered both timing and cache-based side-channel vulnera-

bilities in its password encoding method. We empirically confirmed

all our findings against both open source and recently-released

proprietary implementations of WPA3.

All combined, our work resulted in the following contributions:

• We provide a self-contained and high-level description of

WPA3 and its SAE handshake (Section 2 and 3).

• We show that the anti-clogging mechanisms of SAE is un-

able to prevent denial-of-service attacks (Section 4). In par-

ticular, by abusing the overhead of SAE’s defenses against

already-known side-channels, a resource-constrained device

can overload the CPU of a professional Access Point (AP).

• We present a dictionary attack against WPA3 when it is op-

erating in transition mode (Section 5). This is accomplished

by trying to downgrade clients to WPA2. Although WPA2’s

4-way handshake detects the downgrade and aborts, the

frames sent during the partial 4-way handshake provide

enough information for a dictionary attack.We also present a

downgrade attack against SAE, and discuss implementation-

specific downgrade attacks when a client improperly auto-

connects to a previously used WPA3-only network.

• We empirically investigate the feasibility of timing attacks

against WPA3’s SAE handshake (Section 6). This confirms

timing attacks are possible and leak info about the password.

• We present a novel micro-architectural cache-based side-

channel attack against the SAE handshake (Section 7). This

attack leaks information about the password being used.

Our attack even works against hash-to-curve algorithm im-

plementations that include countermeasures against side-

channel attacks. This type of attack against hash-to-curve

algorithms is of independent interest due to current stan-

dardization efforts surrounding hash-to-curve methods [73].

• We show both theoretically and empirically how the recov-

ered timing and cache info can be used to perform an offline

password partitioning attack (Section 8). This enables an

adversary to recover the password used by the victim.

Finally, we will discuss related work in Section 9, and we give

concluding remarks in Section 10.

1.1 Responsible Disclosure
We collaborated with the Wi-Fi Alliance and CERT/CC to notify all

affected vendors in a coordinated manner, and helped with imple-

menting backwards-compatible countermeasures. An overview of

affected products and vendors, including allocated Common Vul-

nerabilities and Exposures (CVE) identifiers, can be found at [17].

We hope that our work will influence the deployment of WPA3

before it becomes widespread and hard to patch.

Mathy Vanhoef and Eyal Ronen

2 BACKGROUND
In this section we introduce the (relatively few) new features that

are defined in the WPA3 certification [90], and we explain relevant

aspects of the 802.11 standard [45].

2.1 An Overview of WPA3
The WPA3 certification was created with two types of networks in

mind. The first one is a home network, where users authenticate

using a pre-shared password, and the second one is an enterprise

network, where more advanced authentication methods can be

used (e.g. certificates, smart cards, and so on). To differentiate both

types, the term WPA3-SAE is used for home networks, and the

term WPA3-Enterprise is used for enterprise networks.

WPA3-Enterprise uses existing handshakes, but requires that

ciphers used during authentication provide at least 192 bits of se-

curity. That is, the ciphersuites must use at least 384-bit curves

for elliptic curve cryptography, and use at least 3072-bit moduli

when using RSA or DHE. Currently the WPA3 certification does

not mention requirements on the length of session keys or hash

functions used after authentication [90]. However, a security level

of at least 192-bits will likely also be used after authentication [18].

The WPA3-SAE mode for home networks is more interesting. It

mandates support for the existing Simultaneous Authentication of

Equals (SAE) handshake. This handshake is a Password Authenti-

cated Key Exchange (PAKE), meaning authentication is performed

based on a password. The SAE handshake provides forward secrecy

and resistance against offline dictionary attacks, and was added to

the 802.11 standard in 2011 [47]. Several variants of this handshake

are also used in other protocols (see Section 3.1). The output of

WPA3’s SAE handshake is a Pairwise Master Key (PMK), which

is subsequently used to perform a 4-way handshake to derive a

Pairwise Transient Key (PTK) (see Figure 1). Note that, even though

WPA3 still uses WPA2’s 4-way handshake, it is not vulnerable to

dictionary attacks. This is because the PMK generated by the SAE

handshake has much higher entropy than the password itself.

Finally, in both modes, Management Frame Protection (MFP)

must be used. Most notably, MFP prevents deauthentication attacks

where an adversary forcibly disconnects victims from the AP.

2.2 WPA3-SAE Transition Mode
Because existing devices may not receive support for SAE of MFP,

they will not be able to use WPA3. To accommodate these older

devices, the WPA3 certification defines how a network can simul-

taneously support WPA2’s 4-way handshake and WPA3’s SAE

handshake. In this transition mode, the AP advertises that MFP is

optional, and that it supports both the 4-way and SAE handshake.

Older WPA2 clients can then connect using the 4-way handshake

without MFP, while new WPA3 clients can connect using SAE with

MFP enabled. The only requirement placed on WPA3 clients is that

they must use MFP when connecting to a WPA3-capable AP, even

though the AP advertises MFP as optional.

2.3 Downgrade Protection
An AP advertises its supported cipher suites, i.e., authentication

and encryption algorithms, in the Robust Security Network Ele-

ment (RSNE). The RSNE is included unauthenticated in beacons

Client Access Point

Beacons(RSNE with supported ciphers)

Select cipher

Auth-Commit(scal1, elem1)

Auth-Com
mit(scal2, elem2)

Derive PMK Derive PMK

Auth-Confirm(conf
1
)

Auth-Con
firm(conf 2)

S
A
E
h
a
n
d
s
h
a
k
e

AssocReq(RSNE-Chosen with chosen cipher)

Association Response

A
s
s
o
c
i
a
t
i
o
n

Msg1(ANonce)

Derive PTK

Msg2(SNonce, MIC; RSNE-Chosen)

Derive PTK & Verify RSNE

Msg3(MIC; RSNE, GTK)

Verify RSNE

Msg4(MIC)

4
-
w
a
y
h
a
n
d
s
h
a
k
e

connection established

Figure 1: Connecting to an AP using WPA3. First the SAE
handshake negotiates the master key (PMK), and then the
4-way handshake derives a session key (PTK). To support
mesh networks, the SAE handshake was made so both par-
ties can initiate it in parallel (hence the crossed arrows).

that are transmitted periodically to advertise the presence of a net-

work. Clients also use the RSNE in association requests to inform

the AP of the cipher suites they wish to use. Example authentica-

tion algorithms are the 4-way handshake, the 802.1X protocol, the

SAE handshake, etc. Example encryption algorithms are GCMP or

(AES-)CCMP. Because the RSNE is not authenticated in beacons, an

adversary can spoof this element by forging beacons. To detect this,

the received RSNE is cryptographically verified during WPA2’s

4-way handshake. In particular, when the AP receives message 2

from the client, the AP verifies that the RSNE in the client’s asso-

ciation request was not altered (see Msg2 in Figure 1). Similarly,

when the client receives message 3 from the AP, the client verifies

that the RSNE included in beacons was genuine. Since the 4-way

handshake is always executed at some point when a station (i.e. a

client or AP) connects for the first time to a network, the RSNE is

always verified. In case a mismatch is detected, the handshake is

aborted. This prevents an adversary from spoofing the RSNE, and

thereby tricking the client into using a weaker cipher suite.

Dragonblood: A Security Analysis of WPA3’s SAE Handshake

3 THE SAE “DRAGONFLY” HANDSHAKE
In this section we introduce WPA3’s Simultaneous Authentication

of Equals (SAE) handshake, and discuss side-channel defenses that

were added in various revisions of the handshake.

3.1 Background and History
The WPA3 certification mandates support for the SAE handshake.

This handshake was first introduced by Harkins in 2008 [33], and

was added to the 802.11 standard in 2011 [47]. Several close variants

of the SAE handshake are also used in other protocols. The term

Dragonfly is commonly used to refer to this family of handshakes.

The SAE handshake is a balanced Password Authenticated Key

Exchange (PAKE). Note that in a balanced PAKE, both endpoints

store the password in the same representation (which is in plaintext

when using SAE). The SAE handshake takes as input a pre-shared

secret, and outputs a high-entropy Pairwise Master Key (PMK).

After executing SAE, the 4-way handshake is used to negotiate

a session key called the PTK (recall Figure 1). Finally, the SAE

handshake explicitly supports mesh networks, by allowing both

endpoints to initiate the handshake concurrently.

3.2 Protocol Details
The SAE handshake supports both Finite Field Cryptography (FFC)

using multiplicative groups modulo a prime (MODP groups), and it

supports Elliptic Curve Cryptography (ECC) using elliptic curve

groups modulo a prime (ECP groups). The 802.11 standard man-

dates that if a station advertises support for SAE, it must imple-

ment the elliptic curve NIST P-256 [45, §12.4.4.1][1, 43]. Support

for other groups is optional, meaning there is no mandated support

for MODP groups. Therefore we assume elliptic curves are used,

unless mentioned otherwise.

When describing elliptic curve operations, we use lowercase

letters to denote scalars (i.e. integers), and uppercase letters to

denote elliptic curve points. With SAE, all elliptic curves are defined

over the equation y2 = x3 + ax + b mod p where p is a prime and

the values a, b, and p depend on the curve being used. We use

G to denote the generator of a group, and q to denote the prime

order of G. When executing the SAE handshake, the user-readable

password is converted into a group element. For MODP groups this

is done using a hash-to-group algorithm, and for elliptic curves

using a hash-to-curve algorithm. The resulting password element is

denoted by P , and its generation is described in detail in Section 3.3.

The handshake itself consists of a commit phase followed by a

confirm phase. These two phases, along with the accompanying

elliptic curve operations, are illustrated in Figure 2. Note that the

handshake can be initiated concurrently by both participants (which

may happen in mesh networks after connection loss). Nevertheless,

in the more widely-used infrastructure mode, the client will initiate

the handshake by sending its commit frame, and subsequently the

AP will reply using a commit and confirm frame. In turn the client

sends its confirm frame, completing the handshake.

In the commit phase, each participant first picks a random num-

ber ri ∈ [2,q[and a random maskmi ∈ [2,q[(see Figure 1). The
sum of these numbers (modulo q) must also lie in the range [2,q[.
They then calculate the public group element Ei = −mi · P , after
which they send both the scalar si and the group element Ei to

Alice (e.g. a client) Bob (e.g. an AP)

Pick random rA and mA
sA = (rA +mA) mod q
EA = −mA · P

Pick random rB and mB
sB = (rB +mB) mod q
EB = −mB · P

Auth-Commit(sA , EA)

Auth-Commit(sB , EB)

Verify sB and EB
K = rA · (sB · P + EB)
κ = Hash(K)
tr = (sA, EA, sB , EB)
cA = HMAC(κ, tr)

Verify sA and EA
K = rB · (sA · P + EA)
κ = Hash(K)
tr = (sB , EB , sA, EA)
cB = HMAC(κ, tr)

Auth-Confirm(cA)

Auth-Confi
rm(cB)

Verify cB Verify cA

Figure 2: Details of the SAE handshake. Recall that it sup-
ports mesh networks where two stations may simultane-
ously initiate the handshake (hence the crossed arrows). We
assume elliptic curves are used, since all implementations
of SAE (and hence also WPA3) are required to support it.

the other participant using a commit frame. On reception of these

values, each participant verifies that the received scalar si is within
the range [1,q[, and that the received group element Ei is a valid
point on the curve being used [45, §12.4.5.4]. If one of these checks

fails, the handshake is aborted. Forward secrecy is provided by

relying on the difficulty of derivingmi given P and Ei , i.e., it relies
on the hardness of the elliptic curve discrete logarithm problem.

In confirm phase, each participant calculates the shared secret

point K (see Figure 2). The x-coordinate of this point is processed

using a hash function to derive the key κ. Finally, a HMAC over the

handshake summary tr is calculated using the key κ. The result of
this hash, denoted by ci , is sent to the other participant in a confirm

frame. On reception of ci , the receiver verifies its value. If it equals
the expected value, the handshake succeeds, and the negotiated

key κ becomes the Pairwise Master Key (PMK). Otherwise the

confirm frame is ignored, and the handshake eventually times out.

For details on how the SAE handshake negotiates which crypto-

graphic group is used, we refer to Section 5.2. The handshake also

has a mechanism to prevent denial-of-service (DoS) attacks, but

unfortunately this defense is flawed (see Section 4).

3.3 Password Derivation
When constructing the commit frame, the pre-shared password is

first converted into a curve point using a hash-to-curve algorithm.

The specific algorithm used in SAE is based on a try-and-increment

method, and is shown in Listing 1. Summarized, it first hashes

the password, together with a counter and the MAC addresses of

both stations, and uses the output of the hash as the x-coordinate

Mathy Vanhoef and Eyal Ronen

Listing 1: Converting the pre-shared password into an ellip-
tic curve point in Python-like pseudocode [45, §12.4.4.2.2].

1 def password_to_element_ecc(password, MAC1, MAC2, k=40):
2 found = False
3 counter = 0
4 base = password
5 while counter < k or not found:
6 counter += 1
7 seed = Hash(MAC1, MAC2, base, counter)
8 value = KDF(seed, "SAE Hunting and Pecking", p)
9 if value >= p: continue
10

11 if is_quadratic_residue(value^3 + a * value + b, p):
12 if not found:
13 x = value
14 save = seed
15 found = True
16 base = random()
17

18 y = sqrt(x^3 + a * x + b) mod p
19 if LSB(save) == LSB(y):
20 P = (x, y)
21 else:
22 P = (x, p - y)
23 return P

of the curve point. It then tries to find a solution for y over the

equation y2 = x3+ax +b mod p. In case a solution exists, the point

(x,y) becomes the password element P . If no solution is found, the

counter is increased, and another attempt is made to find a solution

for y using the new value for x . Finally, to mitigate timing attacks,

the main loop is always executed k times, no matter when a solution

for y is found. In the extra iterations, calculations are based on a

randomly generated password instead of the real one.

Interestingly, this algorithm underwent various changes, and all

these changes attempt to reduce side-channel leaks. In particular,

the original 802.11s amendment that introduced SAE did not include

the additional iterations [47, §8.2a.4.2.2]. Put differently, originally

the algorithm immediately stops when a solution for y is found. An

amendment proposed in 2011 added the extra iterations to mitigate

timing attacks [34], and this amendment was incorporated into the

2012 version of the 802.11 standard [46, §11.3.4.2.2].

Sensitive information can also leak in the Legendre function on

line 11 which checks if the left-hand side of the curve equation is a

quadratic residue. If it is a quadratic residue, a solution for y exists.

However, depending on how the Legendre function is implemented,

its running time may leak information [44]. To prevent timing at-

tacks, an amendment to 802.11 recommends (but does not mandate)

the use of quadratic residue blinding [24, 36]. This amendment got

incorporated into the 2016 version of 802.11 [45, §12.4.4.2.2].

We also note that the size of the counter value is only 1 byte.

However, because the probability of finding a solution for y is

approximately 50%, the chance of the counter overflowing and

causing an infinite loop is only 2
−255

. Even an adversary who forges

2
63

unicast MAC addresses in an attempt to cause an overflow, only

has a chance of 2
−192

of triggering an overflow and infinite loop.

Another critical remark is that the 802.11 standard does not

specify a minimum value for k . This parameter denotes the total

number of iterations that must always be executed to mitigate

timing attacks. In practice, version 2.1 to 2.4 of wpa_supplicant

and hostapd use k = 4, while newer versions use k = 40. This

increase was based on security advice given in a close variant of

the SAE handshake [60]. However, this update was not backported

to older versions, meaning products using a version that use k =
4 are vulnerable to timing attacks (see Section 6.5). Intel’s iwd

client uses the value k = 20, and the reference implementation of

SAE by Harkins uses value 40 [32]. For comparison, the Dragonfly

specification in RFC 7664, which is a close variant of SAE, explicitly

recommends a value of at least k = 40 [37, §4]. The value 40 is

based on a back-of-the-envelope calculation by Igoe [50].

Given the above history of timing side-channels and defenses,

onemaywonder why an alternative design was not used that avoids

side-channel attacks. In particular, during its review by the CFRG,

suggestions were made to exclude the MAC addresses from the

hash-to-curve algorithm [48, 49, 69, 80]. With this modification, the

curve point can be generated offline, and can then be reused in every

connection attempt. This makes side-channel attacks significantly

harder, since the password element is generated only once.

3.4 Variants of Dragonfly
Several minor variants of the SAE handshake exist, and the resulting

family of handshakes is often referred to as Dragonfly [35, 37–39].

Note that the RFCs describing these variants are not standards-track

RFCs, instead, they are either informational or experimental ones.

This means they are independent submissions, and not officially

endorsed by e.g. the Internet Engineering Task Force (IETF). For

example, there was no consensus in the TLS working group to

adopt the TLS-PWD variant of Dragonfly [71]. To the best of our

knowledge, only the 802.11 standard officially adopted Dragonfly.

In all variants, the password element must be computed online,

because it depends on nonces or on the identities of the participants.

For example, the TLS variant of Dragonfly specified in RFC 8492

includes random nonces from the client and server in the hash-

to-curve algorithm. As a result, the password element must be

computed online, meaning implementations may be affected by the

same timing and cache-based side-channel attacks we will present

in this paper. Similarly, implementations of TLS-PWDwill also have

a large overhead due to the required side-channel countermeasures.

4 ABUSING SAE’S SIDE-CHANNEL DEFENSES
In this section, we show how side-channel defenses of SAE (against

already-known leaks), introduce overhead that can be abused in a

denial-of-service (DoS) attack. Simultaneously, we bypass SAE’s

anti-clogging mechanism that is supposed to prevent DoS attacks.

4.1 Background on (Anti-)Clogging Methods
All versions of the SAE handshake contain an anti-clogging method

to mitigate DoS attacks. This is needed because an AP must per-

form costly operations when receiving a commit frame, which an

adversary can otherwise abuse in a DoS attack by forging commit

frames [47, §8.2a.6]. This problem is worse in amended versions of

SAE that contain side-channel defenses against (already-known)

information leaks, as these defenses further increase the cost of

processing commit frames. More precisely, using quadratic residue

blinding, and a fixed number of 40 iterations in the hash-to-curve

algorithm, further increases processing time. For example, when

hostapd added quadratic residue blinding, the increased processing

Dragonblood: A Security Analysis of WPA3’s SAE Handshake

time even caused timeouts on resource constrained devices [42]. To

prevent timeouts, the 802.11 standard was updated to give stations

2 seconds (instead of 40 ms) to process commit frames [9].

The anti-clogging defense of SAE consists of a cookie exchange

procedure. Simplified, in this procedure the client must reflect a

random (secret) cookie sent by the AP, before the AP will process

the client’s commit frame. This is inspired by anti-clogging defenses

from IP-based networks. More precisely, such a defense was also

used by a precursor of IPsec called Photuris, and a similar variant

of this cookie mechanism is also part of IKEv2 [55]. How a cookie

is generated is implementation dependent, but it must satisfy the

following requirements [54]: (1) the cookie depends on the identities

of both parties; (2) only the responder (server) can generate valid

cookies; and (3) the cookie generation and verification must be

fast. The recommended method to meet these requirements, is to

generate a secret value, and calculate the cookie as follows:

Cookie = Hash(ConnectionID ∥ InitiatorID ∥ secret)

The hash function should be a secure one-way hash such as SHA256.

With this cookie exchange, an adversary can no longer initiate hand-

shakes using spoofed IP addresses. This prevents an adversary from,

for example, trigger expensive public key operations by forging

frames with spoofed IP addresses [65]. Although the attacker can

still use its real IP address in forged frames, these requests can be

throttled based on the IP-address. Additionally, because an attacker

must use its real IP address, the threat of attacks is reduced [65].

4.2 Defeating SAE’s Anti-Clogging
The SAE handshake ofWPA3 also uses a cookie exchange procedure

to mitigate clogging attacks. More precisely, this mechanism is sup-

posed to prevent DoS attacks that flood the victim with bogus SAE

commit messages from forged MAC addresses [45, §12.4.6]. How-

ever, in contrast to spoofing IP addresses, it is trivial to spoof MAC

addresses. Even if the AP employs a cookie exchange mechanism,

the adversary can trivially capture all cookies (i.e. anti-clogging

tokens), since everyone within range of the AP can capture and

reflect the secret cookies. More generally, a cookie exchange mech-

anism can trivially be defeated in any broadcast network, since

everyone will receive the (supposedly secret) cookies.

4.3 Experiments
We implemented a Proof-of-Concept (PoC) of a clogging attack

where the adversary inject commit frames using spoofed MAC

addresses, and reflects any cookies (i.e., anti-clogging tokens) it

receives. Out tool is written in C for performance reasons, and build

on top of aircrack-ng. The tool can forge commit frames using any

elliptic curve supported by SAE. It is essential that the adversary

acknowledges all frames sent to forged MAC addresses. Otherwise,

the AP will retransmit replies up to eight times, making it difficult

for the adversary to inject enough commit frames to overload the

target. Fortunately, by relying on the virtualWi-Fi interface support

of Atheros chips, we can easily make it acknowledge frames sent

to any forged MAC address [84, §5.3].

In our clogging experiments, the adversary used a Raspberry

Pi Model B+ having a 700 MHz processor. The Raspberry Pi used

a WNDA3200 wireless dongle. Our target was the professional

AP from vendor A, which has a 1200 MHz processor. In our first

No. of commit exchanges per second

U
til

iz
at

io
n

of
 r

es
ou

rc
e

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

Target CPU
Attacker CPU
Total airtime

Figure 3: Clogging attack against a professional AP from
vendor A using curve P-256. The attacker uses a Raspberry
Pi 1 model B+, and its CPU usage is shown in the small
dashed line. The total amount of airtime consumed by all
SAE frames is shown in the long dashed line.

experiment, the attack is performed using curve P-256. We found

that spoofing more than 70 commit exchanges every second causes

the CPU usage of the AP to reach 100% (see Figure 3). As a result,

clients that try to connect using WPA3 either face long delays, or

cannot connect at all. In contrast, the CPU usage of the attacker is

only 14.2%. Since all APs are required to support NIST curve P-256,

this shows an adversary can perform denial-of-service attacks using

cheap resource-constrained devices.

In a second experiment, we forged commit exchanges using the

P-521 curve. With this curve the impact is an order of magnitude

more catastrophic. Now the target’s CPU can be overloaded by

forging merely 8 commit exchanges every second (see Figure 8 in

the Appendix). On our Raspberry Pi, this attack consumes 2.7% of

the CPU. In other words, a weak adversary is able to clog a high-

end AP. We consider it worrying that such a devastating attack is

possible against a modern security protocol.

Figure 3 and 8 also show the amount of airtime consumed by the

injected frames. We observe that this is just a fraction of the total

available airtime, showing that our attack is more efficient than a

straightforward DoS where an attacker simply jams the channel.

4.4 Attack Optimizations
Our clogging attack can be optimized if we take into account how

APs generate the anti-clogging token. Note that 802.11 standard

recommends to generate anti-clogging tokens by computing a hash

over a secret value and the MAC address of the sender. All devices

we inspected indeed follow hashing-basedmechanism. Additionally,

the 802.11 standards recommends to track the number of open and

unfinished handshakes. When this number hits a given threshold,

the secret value should be renewed [45, §8.2a.6]. This implies that

when the number of open and unfinished handshakes is always

above this threshold, the threshold itself will not be hit, meaning

the secret value is not updated.

If the secret value is infrequently updated, we can reuse previ-

ously captured anti-clogging tokens. In particular, we were able to

inspect the devices shown in Table 1. The first one is an AP from

vendor A, which generates anti-clogging tokens as recommended

Mathy Vanhoef and Eyal Ronen

Table 1: Renewal interval of the secret that is used to gener-
ate anti-clogging tokens for various devices and standards.

Standard or Implementation Version Renewal time

AP from vendor A 10.20.0168 threshold reached

Hostapd v2.6 every 1 minute

Reference Implementation May 2014 never renewed

Phorious [54] 1999 every 1 minute

IKEv2 [55] 2014 not specified

802.11 [45] 2016 threshold reached

by the standard, meaning it is easy to bypass. The second imple-

mentation we tested is the open source hostapd. It also generates

anti-clogging tokens as recommended by the standard, except that

it renews the secret value every minute. This means we can reuse

anti-clogging token for one minute. Against hostapd we also discov-

ered that, if an adversary keeps forging commit frames using the

same MAC address, the AP will constantly (re)process the frame

without requiring anti-clogging tokens, leading an an efficient DoS.

Harkins’ reference implementation of SAE also follows the 802.11

standard, but it never renews the secret value [32]. Table 1 also

shows when other protocols such as IKEv2 renew the secret value.

4.5 Countermeasures
To reduce the impact of an attack, the derivation of the password

element can be done in a low-priority background thread. Although

legitimate WPA3 clients will be unable to connect during an attack,

this at least assures other network functionality is not impacted.

Additionally, larger elliptic curves or MODP groups can be disabled

by default, to reduce the impact of DoS attacks.

A better solution is to use a constant-time and more efficient

hash-to-curve algorithm [73]. Another solution would be to modify

the SAE handshake such that the password element is independent

of the MAC addresses. Doing this would allow both the client and

AP to calculate the password element offline, and reuse it in all

handshakes, preventing our attack. However, SAE’s security proof

must then be updated to take this change into account [59], to verify

whether the protocol would remain secure with this change.

5 DOWNGRADE & DICTIONARY ATTACKS
In this section we present a dictionary attack against WPA3-SAE

when it is operating in transition mode, and discuss an implemen-

tation-specific downgrade attack against WPA3-only networks. We

also present a downgrade attack against the SAE handshake itself.

5.1 Downgrade to Dictionary Attack
Our first attack is against WPA3-SAE transition mode. Recall from

Section 2.2 that in this mode the AP is configured to accept connec-

tions using both WPA3-SAE and WPA2. This provides backward

compatibility with older clients. Moreover, WPA2’s 4-way hand-

shake detects downgrade attacks, meaning an attacker cannot trick

a WPA3-capable client into successfully establishing a connection

using WPA2. Put differently, if an adversary attempts to perform

a man-in-the-middle against a WPA3-capable AP and client, and

Client (victim) Access Point (adversary)

Beacons(RSNE with only WPA2 support)

Select WPA2

1○

AssocReq(RSNE with WPA2 as chosen cipher)

Association Response

2○

Msg1(ANonce)

Derive PTK

Msg2(SNonce, MIC; RSNE-Chosen)

Perform dictionary attack

3○

Figure 4: Dictionary attack againstWPA3-SAE when it is op-
erating in transition mode, by attempting to downgrade the
client into directly using WPA2’s 4-way handshake.

modifies beacons so the client thinks the AP only supports WPA2,

the client will detect the downgrade and abort the 4-way handshake

of WPA2. More precisely, message 3 of WPA2’s 4-way handshake

contains all the supported cipher suites of the AP in the authen-

ticated RSNE element (recall Figure 1). Because this handshake

message is authenticated under the session key (PTK), the adver-

sary cannot modify it. As a result, the client will detect that RSNE

in message 3 does not match with the RSNE received in beacons,

and will subsequently abort the handshake. Hence it is indeed not

possible to force a WPA3-capable client and AP to use WPA2.

The problem is that, although downgrade attacks are detected by

the 4-way handshake of WPA2, by that point an adversary has cap-

tured enough data to perform a dictionary attack. This is because an

adversary only needs a single authenticated 4-way handshake mes-

sage to carry out a dictionary attack [62]. Therefore, even though

the downgrade is detected, by this point it is too late. Moreover, a

man-in-the-middle position is not needed to carry out the attack.

The only requirements are that we know the SSID of the WPA3-

SAE network, and that we are close to a client (see Figure 4). If

these conditions are met, the adversary can broadcast a WPA2-only

network with the given SSID (stage 1○ in Figure 4). This causes the

client to connect to our rogue AP using WPA2. The adversary can

forge the first message of the 4-way handshake, since this message

is not yet authenticated (stage 3○ in Figure 4). In response, the

victim will transmit message 2 of the 4-way handshake, which is

authenticated. Based on this authenticated handshake message, a

dictionary attack can be carried out [62].

We tested the above attack against several client-side implemen-

tations of WPA3 (see Table 2). With the first three tested devices,

the network to connect with must be manually configured. That is,

we had to specify the name of the network to connect with, and that

it uses WPA3 in transition mode. We then let this device connect

to the WPA3 network, after which we put up a rogue WPA2 AP.

This revealed that these three devices tried to connect to the WPA2

Dragonblood: A Security Analysis of WPA3’s SAE Handshake

Table 2: Result of downgrade attacks against WPA3 clients
when the AP operates in transition mode (column Trans) or
in WPA3-only mode (column 3-Only). On the first 3 devices
the network must be configured manually, while on other
devices the network is selected from a list of nearby ones.

Device Software Vulnerable?

Trans. 3-Only

AP from vendor A firmware 10.20.0168 ✓ ✗

RaspBerry Pi 1 B+ OpenWRT r9576 ✓ ✗

MSI GE60 Laptop wpa_supplicant v2.7 ✓ ✗

MSI GE60 Laptop iwd v0.14 ✓ ✓

Dell Latitude 7490 NetworkManager 1.17 ✗ ✗

Google Pixel 3 QPP1.190205.018.B4 ✗ ✗

Galaxy S10 G975USQU1ASBA ✓ ✓

network, allowing subsequent dictionary attacks. With the last four

devices in Table 2, the desired network is selected from a list of

nearby ones. We found that iwd and the Galaxy S10 are vulnerable.

However, Linux’s NetworkManager and the Google Pixel 3 refused

to connect to the rogue WPA2 network, preventing our attack.

We also discovered an implementation-specific downgrade at-

tack when using WPA3-only networks. More precisely, we noticed

that some devices will connect to the rogue WPA2 network, even if

originally the network only supportedWPA3 (see column 3-Only in

Table 2). In particular, iwd and the Samsung Galaxy S10 are affected

by this attack, meaning downgrade to dictionary attacks remain

possible even if the network is configured to only support WPA3.

5.2 Attacking SAE’s Group Negotiation
The SAE handshake can be run using different elliptic curve or mul-

tiplicative groups mod p (i.e. ECP or MODP groups). The “Group

Description” of [43] gives an overview of supported groups. Ad-

ditionally, the 802.11 standard allows station to prioritize groups

in a user-configurable order [45, §12.4.4.1]. Although this provides

flexibility, it requires a secure method to negotiate the group that

will be used. Unfortunately, the mechanism that negotiates which

group or curve is used during the SAE handshake is trivial to attack.

With SAE, the used group is negotiated as follows. When a client

connects to an AP, it includes its desired group in the commit

frame, along with a valid scalar si and element Ei . In case the AP

does not support this group, it will reply using a commit frame

with a status field equal to “unsupported finite cyclic group” (see

stage 1○ in Figure 5). In turn the client will attempt to use its next

preferred group, and send a new commit frame with this group, and

corresponding new scalar si and element Ei . This process continues
until the client selected a curve that the AP supports. Unfortunately,

there is no mechanism that detects if someone interfered with this

process. This makes it trivial to force the client into using a different

group: simply forge a commit frame that indicates the AP does not

support the currently selected group.

Figure 5 illustrates the resulting downgrade attack. Here the

client first construct a commit frame requesting group 21 (i.e. curve

P-521). However, the adversary blocks this frame from arriving

Client Adversary AP

Auth-Commit(group=21, sA, EA)
Block

Auth-Commit(status=unsupported)

1○

Auth-Commit(group=19, s ′A, E
′
A)

Auth-Commit(group=19, sB , EB)

Auth-Confirm(sA)

Auth-Commit(sB)

2○

Figure 5: Downgrade attack against SAE’s group selection: a
man-on-the-side can force the client (initiator) into using a
different cryptographic group during the SAE handshake.

at the AP (see stage 1○ in Figure 5). This can be accomplished by

jamming the frame [84], or by forging channel-switch announce-

ments [83]. The adversary then forges a commit frame that indi-

cates the AP does not support the request group. In response, the

client will pick its second preferred group, which in our example is

group 19 (i.e. curve P-256). From this point onwards, a normal SAE

handshake is executed using group 19 (see stage 2○ in Figure 5).

Notice that this negotiation process is never cryptographically vali-

dated, meaning the downgrade attack is not detected.

It is also possible to perform an upgrade attack, where the victim

is forced to use a more secure cryptographic group. That is, if the

victim prefers small cryptographic groups, our attack can force

the victim into using bigger groups. This may be useful when

performing denial-of-service attacks (recall Section 4), or to amplify

timing side-channels (see Section 6).

5.3 Countermeasures
To mitigate our downgrade to dictionary attack, a client should

remember if a network supports WPA3-SAE. That is, after suc-

cessfully connecting using SAE, the client should store that the

network supports SAE. From this point onward, the client must

never connect to this network using a weaker handshake. This

trust-on-first-usage idea is similar to the one of SSH, and similar to

the Strict-Transport-Security header of HTTPS [63]. Notice from

Table 2 that Linux’s NetworkManager and the Google Pixel 3 al-

ready employ a similar defense. Optionally, in case the client notices

the security configuration of the network changes, the client can

prompt the user for the password of the network. This would pre-

vent automatic downgrade attacks, while still allowing the user to

override our defense by reentering the password. To handle net-

works where only some APs support WPA3, a flag could be added

to the RSNE that indicates some APs only support WPA2, meaning

downgrade attacks cannot be prevented against this network.

Another possible defense, which requires minimal modifications

on clients or APs, would be to deploy separate networks with sepa-

rate passwords for both WPA2 and WPA3.

Mathy Vanhoef and Eyal Ronen

Listing 2: Algorithm that converts the pre-shared password
into a MODP group element [45, §12.4.4.3.2]. The variables
(p,G,q) define the MODP group being used, with p a prime,
G a generator, and q the (prime) order of G mod p.

1 def password_to_element_ffc(password, MAC1, MAC2, k=40):
2 found = False
3 counter = 0
4 while not found:
5 counter += 1
6 seed = Hash(MAC1, MAC2, password, counter)
7 value = KDF(seed, "SAE Hunting and Pecking", p)
8 if value >= p: continue
9

10 P = value
(p−1)/q

mod p
11 if P > 1: found = True
12 return P

In principle, group downgrade attacks can also be mitigated by

remembering which groups a network supports. However, the sup-

ported groups of an AP are more likely to change over time, and

therefore we do not recommend such a defense. Instead, the sup-

ported groups can be included as a bitmap in the RSNE during the

4-way handshake. This will enable a station to detect if a downgrade

attack took place, and to subsequently abort the handshake.

6 TIMING ATTACKS ON MODP GROUPS
In this section we empirically show that the hash-to-group method

that converts a password into a MODP element is vulnerable to

timing attacks. The obtained info will later on be used in password

partitioning attacks, allowing one to recover the victim’s password.

6.1 Background
Up to this point, we assumed the SAE handshake is executed using

elliptic curves. Although this is a natural assumption, since any

station that supports SAE must implement elliptic curve P-256, the

SAE handshake can also be performed using multiplicative groups

mod a prime p (MODP groups). When employing MODP groups,

the algorithm in Listing 2 is used to convert the password into a

group element. In contrast to the algorithm for elliptic curves, the

one for MODP groups does not employ any side-channel defenses

such as performing extra iterations [45, §12.4.4.3.2].

Although elliptic curves are generally more performant than

MODP groups, this is not necessarily the case with SAE. In particu-

lar, due to the extra iterations needed in the hash-to-curve method,

the hash-to-group method for MODP groups may be slightly more

efficient. Recall from Section 3.3 that these extra iterations are

needed to mitigate timing side-channels when using elliptic curves.

As a result, users may prefer MODP groups over elliptic curves, es-

pecially because this would also reduce the impact of our clogging

attack of Section 4. Unfortunately, we show that the hash-to-group

method for MODP groups is also affected by timing side-channels.

In practice this means that for certain MODP groups, extra itera-

tions must be performed in order to mitigate timing attacks.

6.2 Variable Number of Iterations
When converting a password to a MODP element, the algorithm

in Listing 2 performs a variable number of iterations. In fact, the

CFRG already warned about this when they were reviewing a close

Table 3: Overview of MODP groups that cause timing side-
channels when deriving the password element. The third
column shows the probability that an extra iteration is
needed. The last column denotes the average number of it-
erations that are needed to derive the password element.

Group ID [43] len(p) Pr[value ≥ p] E[X]

22 1024 30.84% 1.44

23 2048 32.40% 1.48

24 2048 47.01% 1.89

variant of Dragonfly [23]. Unfortunately, countermeasures against

this timing leak were not incorporated into the SAE handshake. We

will now analyze what the practical impact of this decision is, and

we will determine whether this can be exploited in practice.

The first cause of extra iterations is when the output of the

Key Derivation Function (KDF) on line 7 returns a number bigger

than the prime p of the MODP group. Note that the number of

bits returned by KDF is equal to the number of bits needed to

representp. That is, the number of bits returned by the KDF function

depends on the MODP group being used. This also implies that the

probability that value is bigger than p depends on the MODP group

being used. Fortunately, for most MODP groups this probability

is extremely small, because the prime p is only slightly smaller

than a power of two. However, for the MODP groups shown in

Table 3, the probability that the output of KDF is bigger than p is

high. For example, for group 22 this probability equals 30.84%, and

for group 24 the probability is 47.01% (see column 3 in Table 3).

Finally, the if-condition on line 11 can in principle also cause an

extra iteration to be executed. However, for all supported MODP

groups, the probability of this happening is negligible.

Since the output of the KDF depends on the password, the num-

ber of performed iterations also depends on the password being

used. If an adversary learns this number, they learn that passwords

which require a different number of iterations are not used by the

victim. Note that the number of executed iterations X follows a

geometric distribution:

Pr[X = n] = Pr[value ≥ p]n−1 · (1 − Pr[value ≥ p]) (1)

This means that the average number of iterations required to derive

the password element equals E[X] = (1 − Pr[value ≥ p])−1. For
MODP group 22, this equals 1.45, and for group 24 this equals

1.89 iterations. In other words, on average one timing measurement

allows the adversary to learn the result ofmultiple iterations. Finally,

observe that theMAC address of the client also influences the output

of the KDF, and hence also influences the number of executed

iterations (line 6 in Listing 2). This means that an adversary can

spoof MAC addresses, and for each address measure the number of

executed iterations. We will show in Section 8 how this information

can be used to perform a password partitioning attack, allowing an

adversary to recover the target’s password.

6.3 Experiments
To determine the feasibility of measuring the number of execution

iterations, we performed the attack in a realistic setting. For the

Dragonblood: A Security Analysis of WPA3’s SAE Handshake

No. of timing measurements per spoofed MAC address

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(in

 m
s)

64

64.5

65

65.5

66

0 150 300 450 600 750 900

(a) Measurements of a timing attack using MODP group 22.

No. of timing measurements per spoofed MAC address

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(in

 m
s)

374

376

378

380

382

0 150 300 450 600 750 900

(b) Measurements of a timing attack using MODP group 24.

Figure 6: Recovering the number of iterations needed to gen-
erate the password element forMODP group 22 and 24. Each
line denotes a spoofed MAC address. The lowest cluster of
lines corresponds to a single iteration, the second cluster to
two iterations, and so on. The victim device is a Raspberry
Pi 1 model B+ running hostapd version 2.6.

victim we used a Raspberry Pi 1 model B+ that was running hostapd

version 2.6. We used a Raspberry Pi because its 700 MHz CPU

matches the one in commodity home routers [91]. The Raspberry

Pi was equipped with a WNDA3200 Wi-Fi dongle. Picking hostapd

to run the AP was an obvious choice, since it is the most widely

used wireless daemon in both professional and home routers, and

is the only one that supports MODP groups at the time of writing.

The adversary used a MSI GE60 Laptop with aWNDA3200Wi-Fi

dongle. To perform timing measurements, we wrote a tool on top of

the aircrack-ng tool suite. It spoofs commit frames, and measures

how long it takes to receive the corresponding commit reply. After

each individual measurement, a deauthentication packet is injected

towards the AP. This causes hostapd to clear all state related to

the spoofed MAC address, and enables us to rapidly perform a new

timing measurement with the same spoofed address.

Two optimizations were required to make the attack practical.

First, similar to our clogging attack of Section 4.3, we had to use

virtual interface support of Atheros chips to acknowledge all frames

sent to a spoofed MAC address. This prevents the AP from retrans-

mitting frames, making the attack faster and more reliable. More

importantly, background Wi-Fi traffic influences the timing mea-

surements. Additionally, periodic background tasks on the AP also

influence the timing measurements. Both sources of noise are prob-

lematic because they are not constant throughout the attack. To

handle this, we interleave the time measurements of all spoofed

MAC addresses, instead of performing all measurements for each

MAC address one by one. As a result, temporary noise equally in-

fluences the measurements of all MAC addresses, instead of only

affecting the measurements of one address.

With the above setup and optimizations, we carried out an at-

tack using MODP group 22, and another attack using group 24. We

spoofed 20 addresses in each experiment, and performed 1000 mea-

surements for each spoofed address. The attack against group 22

took 228 minutes, and the attack against group 24 took 607 minutes.

Figure 6 shows the results of these experiments. Each line represents

the average timing measurements of one spoofed MAC address.

From these timings, it is straightforward to derive the number of

executed iterations. For example, the cluster of lines (i.e. spoofed

MAC addresses) at the bottom corresponds to one iteration. The

cluster above that corresponds to two iterations, and so on. For the

highest line in the MODP group 24 attack, careful inspection reveals

that this corresponds to 9 iterations. The correctness of these re-

sults was confirmed by inspecting the debug output of hostapd. We

conclude that timing attacks can accurately determine the number

of executed iterations.

6.4 Countermeasures and Discussion
Ideally, groups 22, 23, and 24 should be disabled. Doing this is in

line with RFC 8247, which recommends that implementations no

longer use these groups due to, among other things, their small

subgroups [64, 82]. Implementations also should not use MODP

groups 1, 2, or 5 [64]. The other MODP groups use primes that

are slightly smaller than a power of two, meaning it is extremely

unlikely that the output of the KDF in line 7 of Listing 2 is bigger

or equal to the prime p. Therefore, with these groups the password

element is practically always found in the first iteration.

Another option is to exclude the MAC addresses from the hash-

to-groupmethod used by the SAE handshake. Similar to our defense

from Section 4.5 against clogging attacks, this would allow imple-

mentations to calculate the password element offline. Although the

algorithm would still be insecure, an adversary would no longer be

able to easily trigger (and measure) executions of it.

In principle, extra iterations can also be performed after finding

the MODP password element, so a fixed number of iterations are al-

ways executed. This is similar to the countermeasure for the elliptic

curve case. However, we do not recommend this defense, because

implementations may still be vulnerable to cache-based attacks,

and because groups 22 to 24 should be avoided in general [64].

6.5 Applicability to Elliptic Curves
In practice, we discovered that version 2.1 to 2.4 of wpa_supplicant

and hostapd use k = 4 in the hash-to-curve algorithm, while only

newer versions use k = 40. This means that against these older

versions, timing attacks are also possible when elliptic curves are

Mathy Vanhoef and Eyal Ronen

used. In particular, a random MAC address will have a probability

of 2
−4 = 6.25% of requiring more than 4 iterations, in which case

information about the password is leaked. Although most Linux dis-

tributions that used these older versions do not enable SAE in those

builds, dedicated builds for networking devices (e.g. OpenWRT

15.05.1) did use these older versions with SAE enabled.

We also conjecture that resource-constrained devices may not

implement the fixed amount of 40 iterations, due to the overhead of

this countermeasure. Against such implementations, timing attacks

would also be possible against the hash-to-curve algorithm.

7 CACHE-BASED ATTACKS ON ECC GROUPS
In this section we demonstrate that implementations of the hash-

to-curve algorithm of SAE may be vulnerable to cache-based side-

channel attacks. Similar to the timing attack against MODP groups,

this will later on enable an adversary to recover a target’s password.

7.1 Background and Attack Goal
The goal of our attack is to learn if the Quadratic Residue (QR) test

in the first iteration of the hash-to-curve algorithm succeeded or not.

This information will be used in the offline password partitioning at-

tack of Section 8 to recover the target’s password. Unlike the case of

the MODP groups described in Section 6, the implementation of the

hash-to-curve algorithm for ECC groups does include mitigations

against side-channel attacks. Those mitigations include perform-

ing extra dummy iterations on random data [45, §12.4.4.3.2], and

blinding of the underlying cryptographic calculation of the qua-

dratic residue test [36]. The resulting code of wpa_supplicant and

hostapd implementation we reviewed is pseudo-constant time, i.e.,

there might be some minor variation in run time, but they are too

minute to be measured by an adversary. However, in many cases

such pseudo-constant time implementations are still vulnerable to

different types micro-architectural side-channel attacks [2, 51, 70].

7.1.1 Micro-Architectural Side-Channel Attacks. Modern proces-

sors try to optimize their behavior (e.g. memory access, branch

prediction) by saving an internal state that depends on the past.

Micro-architectural side-channel attacks exploit leaked informa-

tion about the running of other programs due to sharing of this

state [26]. Cache-based side-channel attacks exploit the state of the

memory case (either instructions or data) and have been widely

used to break cryptographic primitives [5, 14, 27, 67, 95].

In the different variants of the Flush+Reload attack [29, 30, 95,

97] the attacker starts by evicting (or flushing) a memory location

from the cache. After waiting for a predetermined interval, he

measures the time it takes to reload the flushed location. If during

the interval the victim accesses this memory location, it will be

cached, and the reload time for the attacker will be short. Otherwise,

the reloading of the flushed memory location will be much slower.

In this way, the attacker can trace the victim’s memory access

patterns.

7.2 Attack Scenario
Our attack requires the ability to monitor cache access patterns on

the victim machine. However, unlike many cache attacks against

TLS implementations [2, 51, 70], we can also target the client side.

We can run our attack from any unprivileged user-mode process

(or application on android). Oren et al. [66] even showed how to

perform such attacks from the browser using JavaScript code (al-

though browsers are now implementing mitigation for these types

of attacks).

For our password partitioning attack, we need to record several

handshakes with different MAC addresses. We can get handshakes

with different MAC addresses by targeting multiple clients in the

same network (e.g. convince multiple users to download the same

malicious application). If we are only able to attack one client,

we can set up rogue APs with the same SSID but a spoofed MAC

address. We can force victims into connecting to our rogue AP by

using a higher signal strength, or jamming the legitimate AP [84].

7.3 Attacking the hostap Implementation
Our target implementation is the sae_derive_pwe_ecc function

in the latest hostap code (commit 0eb34f8f2 from Sat Jan 26) with

the default curve P-256. Our test machine uses a 4-core Intel Core

i7-7500 processor, with a 4MiB cache and 16GiB memory, running

Ubuntu 18.04.1. To monitor access to the instruction cache we

use the Flush+Reload attack [95], as implemented in the Mastik

toolkit [94].

To learn the result of the first QR test, we can either attack the

blinded QR test implementation, or the branch in the iteration loop

that checks the result of the test. A simple cache attack against the

blinded QR test is infeasible as the two possible code paths (see

Listing 4 line 19) are compiled into a single cache line.
1

The two code paths of the branch inside the iteration loop (see

Listing 5 line 28) are compiled into two separate cache lines. There-

fore we can monitor cache access to nQR cache line which is the

target of the conditional jump (see Listing 6 line 9). To differentiate

between the branches taken in the first and subsequent iterations,

we created a synchronization “clock” by monitoring another cache

line that is accessed once every iteration (similarly to what is done

in [96]).

On our test platform, monitoring two cache lines repeatedly

over time caused a high rate of false positives (i.e. false detection

of access to cache lines). This error rate increases considerably if

the monitored cache lines are close. Consequently, for our “clock”

we choose to monitor a cache line far away from the nQR cache

line (in our case the function sha256_prf_bits).

7.3.1 Classification of Cache Access Patterns. We want to classify

our cache traces as one of two cases depending on the results of

the QR test in the first iteration (non-QR or QR). The measured

cache access patterns to the two monitored cache lines show a

high variance between different traces of the same case. This might

be due to OS related noise, speculative execution, or the way that

the random dummy iterations affect the branch predictor behavior

in the next run of the function. To overcome this we perform a

simplified variant of a cache template attack [16, 30]. That is, we

measure a trace of the cache access pattern by monitoring the

two addresses (the “clock” and the non-QR case) in fixed intervals

of 50000 clock cycles (each iteration takes ≈ 200000 clock cycles

on our test machine). We encode each trace into two bits that

correspond to the two memory locations. In each trace a bit is set

1
More advanced micro architectural attacks targeting the branch predictor [2, 6, 21]

will fail due to the extra random iterations.

Dragonblood: A Security Analysis of WPA3’s SAE Handshake

Figure 7: Probability distribution for attack results

to one if its corresponding memory location was accessed, and to

zero otherwise.

In our attack we only keep active measurements with at least

one non-zero bit. Our attack returns the value of the first two active

measurements, meaning the return value consists of four bits (re-

sulting in 9 possible return values). Figure 7 shows the distribution

of these return values when the first iteration of the hash-to-curve

algorithm results in a non-QR number (nQR), and when the first

iteration results in a QR number (QR).

For our classification we repeat the attack 20 times for each MAC

address. We created a training set for the non-QR and the QR cases

using 100 ·20 traces each. We used this training set to build a simple

linear classifier that receives 20 traces as an input, and returns the

input classification, namely either non-QR or QR. We then tested

our attack and linear classifier on a larger test set of 400 · 20 traces

for each case. For the non-QR case we have achieved a 100% success

rate (400 out of 400), and for the QR case we have achieved a 99.5%

success rate (398 out of 400). We can conclude that an adversary

can reliably abuse cache-based side-channels to determine whether

the password element was found in the first iteration or not.

7.4 Countermeasures and Discussion
As in the MODP case, the ideal solution is to modify the SAE

handshake such that the password element is independent of MAC

addresses, and use a constant-time hash-to-curve algorithm from

the new standard [73]. Even if the attacker can attack the one-time

offline calculation, and exploit some residual side-channel leak-

age, the expected number of password bits leaked is only two. A

backwards-compatible countermeasure is to replace the two vulner-

able branches with a constant-time select utility, and use constant

time Legendre symbol computation as defined in [73].

8 PASSWORD PARTITIONING
In this section we show how to perform password partition attacks,

using the information obtained from our timing and cache attacks.

This enables an adversary to recover the password of a target.

8.1 Partitioning a Dictionary
In the first attack variant, our goal is to recover the password from

a given dictionary. We accomplish this by repeatedly partition-

ing the dictionary into correct and incorrect password candidates.

Listing 3: Password partitioning algorithm in Python-like
pseudo code. It eliminates incorrect passwords based on the
result of specific element tests for each spoofed MAC ad-
dress. It returns a list of remaining candidate passwords.

1 def recover_password(dictionary, testdata, mactarget):
2 # dictionary: Set of possible passwords.
3 # testdata: Element test results for each spoofed MAC address and
4 # counter value used in a specific element test.
5 # mactarget: MAC address of the target (e.g. a client or AP).
6

7 for macspoof, counter, result in testdata
8 for p in dictionary:
9 if simulate_test(p, macspoof, mactarget, counter) != result:
10 dictionary.remove(p)
11 if len(dictionary) <= 1: break
12 return dictionary

Practically, this is implemented by removing incorrect passwords

from the dictionary during each partitioning step. If the dictionary

becomes empty, this means the target’s password was not in it.

However, if after the partitioning steps only one password remains,

then with high probability this is the target’s password.

The result of every element test that is performed in a (password-

dependent) iteration of Listing 1 or 2 can be used to partition the dic-

tionary. We use the term element test to refer to both the quadratic

residue test for elliptic curves, and the if-test that checks whether

the prime of the MODP group is bigger than the hash output. Recall

that with one timing measurement against the MODP algorithm,

we learn on average the result of multiple (failed) element tests.

Considering element tests separately also has the advantage that,

if for example we are unsure whether a spoofed address resulted in

4 or 5 iterations, this info still enables us to determine that the first

three element tests failed. By representing our timing and cache

attack measurements as a set of element tests, we can now use the

same partitioning attack algorithm in both attack scenarios.

The algorithm illustrated in Listing 3 implements the password

partitioning algorithm. As input it receives a dictionary, the set of

element tests and their result, and the MAC address of the target.

The algorithm uses this information to partition the dictionary

by removing passwords that lead to a different result for the ele-

ment test compared to the result that we measuring this the timing

or cache-based attack. More importantly, this algorithm can be

run offline, i.e., without requiring any interactions with the target

device.

8.2 Prerequisites and Success Analysis
To determine the performance of the password partitioning algo-

rithm, we first calculate how many element tests are required to

uniquely recover the password with high probability. Note that

every element test is independent, because in each iteration the

hash inputs are different, resulting in independent hash outputs.

Let pe denote the probability that the group element is not found,

meaning another iteration and element test has to be performed.

For the elliptic curve algorithm, pe is close to 50%, and for MODP

groups the values for pe are listed in in Table 3 under Pr[value ≥ p].
We want to know the probability of eliminating d incorrect

passwords, when given the result of n element tests. Let Z denote

a random variable that equals the number of element tests that are

Mathy Vanhoef and Eyal Ronen

required to eliminate d incorrect passwords. This means that if a

dictionary of size d + 1 contains the correct password, and we use n
element tests, the probability of uniquely recovering the password

is Pr[Z ≤ n]. To derive this probability, we first introduce random

variableY as being the number of element tests where the password

element was found. We have:

Pr[Y = k] =

(
n

k

)
· (1 − pe)

k · pn−ke (2)

This is because the result of an element test does not eliminate

an incorrect password when the incorrect password has the same

result under the given MAC addresses and iteration count. For

example, if the real password in a given iteration did not have a

quadratic residue, and the incorrect password also did not, then the

results of this element test does not eliminate the password. Given

that in k out of n measured element tests the password element

was found, the probability that all element tests do not eliminate a

random password equals (1−pe)
k ·pn−ke . Now let random variable

E denote the number of eliminated passwords. The probability that

all d incorrect passwords are eliminated equals:

Pr[E = d | Y = k] =
(
1 − (1 − pe)

k · pn−ke

)d
(3)

Finally, given the result of n random element tests, the probability

that all d incorrect password are eliminated equals:

Pr[Z ≤ n] =
n∑

k=0

Pr[Y = k] · Pr[E = d | Y = k] (4)

We tested the above formula by running 100 000 runs of the par-

titioning algorithm on 1 000 passwords. Each run used random

simulated element test results (i.e. simulated timing measurements).

Our experimental results closely matched that of formula 4.

By trying various values for n with the RockYou password dump,

we find that for MODP group 22, having n ≥ 35 element tests

gives us a probability above 95% of uniquely recovering the correct

password. On average, we need to perform 35/1.44 = 24.3 timing

measurements to obtain 35 element tests (recall Table 3). For elliptic

curve P-256, an adversary needs to obtain 29 element test results

to uniquely recover the password with a probability above 95%.

Given that our cache-based side-channel attack can detect a QR

with 100% accuracy, and a non-QR with 99.5% accuracy, the proba-

bility of that on average all used non-QR measurement are correct

equals 0.99512.5 = 0.939. The probability of uniquely recovering

the password then becomes at least 0.95 · 0.939 = 0.892. In other

words, using 25 cache-based element test results, the probability of

recovering the password from the RockYou dump is close to 90%.

Using formula 4, we can also determine the average number of

element tests that are needed to eliminate all d incorrect passwords:

ℓ =

∞∑
i=1

i · Pr[Z = i] =
∞∑
i=1

i · (Pr[Z ≤ i] − Pr[Z ≤ i − 1]) (5)

We tested the above formula by running 100 000 runs of the par-

titioning algorithm with each time 1 000 random passwords, as-

suming pe equals 0.3084. Results closely matched the predicted

ones.

Assuming the RockYou dump is used for the dictionary, and

MODP group 22 as the target, formula 5 teaches us that on average

an adversary needs to obtain 28.28 element tests to uniquely recover

the password. For elliptic curve P-256, the adversary would need

on average 25.11 element tests (i.e. quadratic residue test results).

8.3 Computational Requirements
To estimate the computational costs of running the partitioning al-

gorithm in function of the dictionary size d , we derive the expected
number of element tests that have to be simulated (see line 9 in

Listing 3). From formula 5 we already know the expected number

of element tests that are needed to eliminate all d incorrect pass-

words. In other words, the partitioning algorithm will execute on

average ℓ iterations. During each of these iterations, a percentage

of passwords are eliminated from the dictionary. More precisely,

when taking a random element test as reference, and comparing it

with an incorrect password, the chance of not being able to remove

the incorrect password as a candidate is pf = p
2

e + (1−pe)
2
. Hence,

the amount of element tests that are performed on average is:

d + p1f d + p
2

f d + . . . + p
−⌈ℓ⌉
f d = d

1 − p
⌈ℓ⌉
f

1 − pf
(6)

We again tested the above formula by running 100 000 runs of the

partitioning algorithm, with each time 1 000 random passwords,

assuming pe = 0.3084. Results closely matched the predictions. For

MODP group 22 and the RockYou dictionary, this would mean that

on average we have to perform 33 627 714 element tests. With ellip-

tic curve P-256 this results in 28 689 748 element tests on average.

On a laptop with an Intel i7-8650U CPU running at 1.90GHz,

performing an attack using the RockYou password list takes on

average around 11 minutes. This means ordinary users can perform

this attack on their existing off-the-shelf hardware.

We can further optimize the partitioning algorithm if pe differs

from 0.5. That is, when attacking a MODP group, we can first

process the dictionary using an element test result where the target

did not found the password in the given iteration. Recall that this

happens with probability pe . A random incorrect password then

has a probability 1 − pe of being eliminated. Since on average

ℓ · pe element tests can be used to eliminate an incorrect password

with a probability of 1 − pe , formula 6 can be modified in the

obvious way to take our new strategy into account. When using the

RockYou dictionary under this new strategy, we need to perform

only 20 742 225 element tests using MODP group 22, a reduction

by 38%.

8.4 Brute-Force Attacks in the Cloud
In our second variant of the partitioning attack, we essentially per-

form an offline brute-force attack on the password. More concretely,

our goal is to test all possible 8-character lowercase passwords. Us-

ing formula 5 we know that on average this requires 38.36 element

tests for MODP group 22, and 38.92 for elliptic curve P-256. Recall

that for the MODP case, this means we need to make on average

38.36/1.44 = 26.64 timing measurements. These are relatively mod-

est requirements. For example, in our demonstration of the timing

attack we already performed 20 timing measurements. As a result,

we must assume an adversary can obtain the required number of

element test results.

Dragonblood: A Security Analysis of WPA3’s SAE Handshake

We now calculate the costs of running the offline partitioning

phase on Amazon EC2 instances. For both the MODP and elliptic

curve cases, we first performed repeated microbenchmarks where

we simulated one million element tests on a single EC2 vCPU. On

average, the MODP test took 3.04 microseconds, and the quadratic

residue test took 23.25 microseconds. In macrobenchmarks of the

partitioning algorithm on the RockYou dictionary, close to identical

running times were observed. We now multiply these timings with

the result from formula 6. In particular, for MODP group 22 we

need to perform on average 301 947 836 620 element tests, and for

curve P-256 we need to perform 417 654 129 151 tests. Fortunately,

we can parallelize the code by splitting the brute-force search out

over several workers. Every worker gets access to all the element

test results, meaning if sufficient element tests were obtained, every

worker will discard all incorrect passwords. Only the real password

will be detected as potentially valid.

Assuming we rent c5.18xlarge instances having 72 vCPUs, which

costs $3.06 an hour, we can perform the brute-force search against

the MODP case for $10.63 on average (within e.g. an hour). The

brute-force attack against elliptic curveswould cost $125 on average,

which although more costly, is still a worryingly low amount.

9 RELATEDWORK
After the introduction of WPA, it was quickly found to be vul-

nerable to dictionary attacks [62]. Later, He and Mitchell formally

analyzed WPA’s 4-way handshake, and discovered a DoS vulner-

ability [40, 61]. This resulted in the standardization of a slightly

improved 4-way handshake [45]. He et al. continued to analyze the

4-way handshake, and proved its correctness [41]. However, imple-

mentations of the 4-way handshake were nevertheless vulnerable

to downgrade attacks [85]. Recently, Vanhoef and Piessens discov-

ered thatWPA2 was vulnerable to key reinstallation attacks [86, 87].

Finally, Kohlios and Hayajneh provide an overview of WPA2 and

the differences with WPA3 [56].

Researchers also discovered several DoS attack against Wi-Fi

networks. The most well-known is the deauthentication attack [11].

Other DoS attacks exploit weaknesses in TKIP [28]. Additionally,

Könings et al. found several DoS vulnerabilities in the physical

and MAC layer of 802.11 [57], and other researchers constructed

jammers using commodity hardware [72, 84]. A detailed survey

of DoS attacks at the physical and MAC layer is given by Bicakci

and Tavli [15]. Aiello et al. show how susceptibility to denial-of-

service attacks can be balanced with the need for perfect forward

secrecy [7]. To the best of our knowledge, our clogging attack

against WPA3 is the first that overloads the CPU of the victim.

An initial version of Dragonflywas vulnerable to an offline dictio-

nary attack [22]. A modified variant was then specified in 2008 [33].

Several close variants of it have been defined over the years, and

are commonly referred to as Dragonfly-type handshakes [35, 37–

39]. Trevor Perrin did a review of an improved draft of the hand-

shake [69], and later provided an overview of other people’s com-

ments on the handshake [68]. Struik reviewed a draft of the hand-

shake [79]. Clarke and Hao discovered a small subgroup attack

against a draft of the handshake, which was mitigated in a new

draft [19]. Lancrenon and Skrobot provided a security proof of a

close variant of the Dragonfly handshake [59]. Finally, Alharbi et

al. designed a variant of Dragonfly that attempts to keep computa-

tional costs low [8].

Other types of PAKEs have also been proposed by researchers

over the years [3, 4, 10, 12, 13, 52, 53, 75, 77, 78, 93], of which some

have been submitted as RFCs [31, 58, 58, 74, 76, 81, 92]. Finally,

there is also research into post-quantum PAKEs [20, 25].

10 CONCLUSION AND RECOMMENDATIONS
In light of our presented attacks, we believe that WPA3 does not

meet the standards of a modern security protocol. Moreover, we be-

lieve that our attacks could have been avoided if the Wi-Fi Alliance

created the WPA3 certification in a more open manner. Notable

is also that nearly all of our attacks are against SAE’s password

encoding method, i.e., against its hash-to-group and hash-to-curve

algorithm. Interestingly, a simple change to this algorithm would

have prevented most of our attacks. In particular, the peer’s MAC

addresses can be excluded from SAE’s password encoding algo-

rithm, and instead included later on in the handshake itself. This

allows the password element to be computed offline, meaning an

adversary can no longer actively trigger executions of the pass-

word encoding method. Moreover, this would mean that for a given

password, the execution time of the password encoding method

would always be identical, limiting the amount of information be-

ing leaked. Surprisingly, when the CFRG was reviewing a minor

variant of Dragonfly, they actually discussed these type of modifi-

cations [48, 49, 69, 80]. However, to our surprise, this change was

not incorporated into any of the Dragonfly variants.

We also conjecture that resource-constrained devices may not

implement all the side-channel countermeasures, as these may

be too costly on lightweight processors. Additionally, correctly

implementing our suggested backwards-compatible side-channel

countermeasures is non-trivial. This is worrisome, because security

protocols are normally designed to reduce the change of implemen-

tation vulnerabilities.

Finally, we believe that a more open process would have pre-

vented (or clarified) the possibility of downgrade attacks against

WPA3-Transition mode. Nevertheless, althoughWPA3 has its flaws,

we still consider it an improvement over WPA2.

ACKNOWLEDGMENTS
We thank Yuval Yarom for his helpful comments and insights. We

also want to thank Philipp Ebbecke, and an anonymous contributor,

for their help in testing downgrade attacks against the Pixel 3 and

Galaxy S10. Mathy Vanhoef holds a Postdoctoral fellowship from

the Research Foundation Flanders (FWO). This work is partially

supported by an ISF grant number 1523/14, and by the Center for

Cyber Security at New York University Abu Dhabi (NYUAD).

REFERENCES
[1] 2013. FIPS PUB 186-4: Digital Signature Standard (DSS). National Institute of

Standards and Technology (NIST) (2013).
[2] 2019. The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS Imple-

mentations. In To appear in the IEEE Symposium on Security and Privacy. IEEE
Computer Society.

[3] Michel Abdalla and David Pointcheval. 2005. Simple password-based encrypted

key exchange protocols. In Cryptographers’ track at the RSA conference. Springer,
191–208.

Mathy Vanhoef and Eyal Ronen

[4] Michel Abdalla and David Pointcheval. 2005. Simple Password-Based Encrypted

Key Exchange Protocols. In Topics in Cryptology – CT-RSA 2005. Springer Berlin
Heidelberg, 191–208.

[5] Onur Acıiçmez. 2007. Yet Another MicroArchitectural Attack: Exploiting I-Cache.

In CSAW.

[6] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. 2007. New Branch Predic-

tion Vulnerabilities in OpenSSL and Necessary Software Countermeasures. In

IMA Int. Conf.
[7] William Aiello, Steven M. Bellovin, Matt Blaze, John Ioannidis, Omer Reingold,

Ran Canetti, and Angelos D. Keromytis. 2002. Efficient, DoS-resistant, Secure

Key Exchange for Internet Protocols. In ACM CCS.
[8] Eman Alharbi, Noha Alsulami, and Omar Batarfi. 2015. An Enhanced Dragonfly

Key Exchange Protocol against Offline Dictionary Attack. Journal of Information
Security 6, 02 (2015), 69.

[9] Gabor Bajko. 2017. SAE reauthentication timer value. Retrieved

19 September 2018 from https://mentor.ieee.org/802.11/dcn/17/

11-17-1030-01-000m-sae-retry-timeout-clarification.docx.

[10] José Becerra, Dimiter Ostrev, and Marjan Škrobot. 2018. Forward Secrecy of

SPAKE2. In International Conference on Provable Security. Springer, 366–384.
[11] John Bellardo and Stefan Savage. 2003. 802.11 denial-of-service attacks: real

vulnerabilities and practical solutions. In USENIX Security.
[12] Steven M Bellovin and Michael Merritt. 1992. Encrypted key exchange: Password-

based protocols secure against dictionary attacks. In Research in Security and
Privacy, 1992. Proceedings., 1992 IEEE Computer Society Symposium on. IEEE,
72–84.

[13] Steven M Bellovin and Michael Merritt. 1993. Augmented encrypted key ex-

change: a password-based protocol secure against dictionary attacks and pass-

word file compromise. In Proceedings of the 1st ACM Conference on Computer and
Communications Security. ACM, 244–250.

[14] Daniel J. Bernstein. 2005. Cache-timing attacks on AES.

[15] Kemal Bicakci and Bulent Tavli. 2009. Denial-of-Service attacks and counter-

measures in IEEE 802.11 wireless networks. Comput. Stand. Interfaces 31, 5
(2009).

[16] Billy Bob Brumley and Risto M. Hakala. 2009. Cache-Timing Template Attacks.

In ASIACRYPT (Lecture Notes in Computer Science), Vol. 5912. Springer, 667–684.
[17] CERT/CC. 2019. Vulnerability Note VU#871675: Security issues with WPA3.

http://www.kb.cert.org/vuls/id/871675

[18] Hemant Chaskar. 2019. WLAN Security Enhancements: WPA3, OWE, DPP.

Retrieved 9 April 2019 from https://d2cpnw0u24fjm4.cloudfront.net/wp-content/

uploads/WLPC_2019_WPA3-OWE-and-DDP_Hemant-Chaskar.pdf.

[19] D. Clarke and F. Hao. 2014. Cryptanalysis of the dragonfly key exchange protocol.

IET Information Security 8, 6 (2014), 283–289.

[20] Jintai Ding, Saed Alsayigh, Jean Lancrenon, RV Saraswathy, and Michael Snook.

2017. Provably secure password authenticated key exchange based on RLWE

for the post-quantum world. In Crypto Track at the RSA Conference. Springer,
183–204.

[21] Dmitry Evtyushkin, Ryan Riley, Nael B. Abu-Ghazaleh, and Dmitry Ponomarev.

2018. BranchScope: A New Side-Channel Attack on Directional Branch Predictor.

In ASPLOS.
[22] Scott Fluhrer. 2008. Re: [Cfrg] I-D for password-authenticated EAP method.

Retrieved 9 November 2018 from https://www.ietf.org/mail-archive/web/cfrg/

current/msg02206.html.

[23] Scott Fluhrer. 2012. Re: [Cfrg] Status of DragonFly. Retrieved 8 November 2018

from https://www.ietf.org/mail-archive/web/cfrg/current/msg03265.html.

[24] Scott Fluhrer. 2014. Re: [Cfrg] Requesting removal of CFRG co-

chair. Retrieved 7 April 2019 from https://mailarchive.ietf.org/arch/msg/cfrg/

WXyM6pHDjGRZXZzSc_HlERnp0Iw.

[25] Xinwei Gao, Jintai Ding, Lin Li, Saraswathy RV, and Jiqiang Liu. 2017. Efficient

Implementation of Password-Based Authenticated Key Exchange from RLWE

and Post-Quantum TLS. Cryptology ePrint Archive, Report 2017/1192. https:

//eprint.iacr.org/2017/1192.

[26] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A Survey of Microar-

chitectural Timing Attacks and Countermeasures on Contemporary Hardware.

J. Cryptographic Engineering 8, 1 (2018).

[27] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. 2018. Drive-By

Key-Extraction Cache Attacks from Portable Code. In ACNS.
[28] Stephen Mark Glass and Vallipuram Muthukkumarasamy. 2007. A Study of the

TKIP Cryptographic DoS Attack. In International Conf. on Networks. IEEE.
[29] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.

Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA.
[30] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template

Attacks: Automating Attacks on Inclusive Last-Level Caches. In USENIX Security
Symposium. USENIX Association, 897–912.

[31] F. Hao. 2017. J-PAKE: Password-Authenticated Key Exchange by Juggling. RFC

8236.

[32] Dan Harkins. [n. d.]. simultaneous authentication of equals. Retrieved 14 No-

vember 2018 from https://sourceforge.net/p/authsae/wiki/Home/.

[33] Dan Harkins. 2008. Simultaneous Authentication of Equals: A Secure, Password-

Based Key Exchange for Mesh Networks. In The Second International Conference
on Sensor Technologies and Applications (SENSORCOMM). 839–844.

[34] Dan Harkins. 2011. Thwarting Side Channel Attacks. Re-

trieved 9 September 2018 from https://mentor.ieee.org/802.11/dcn/

11-11-1411-01-000m-thwarting-side-channel-attacks.doc.

[35] Dan Harkins. 2012. Secure Pre-Shared Key (PSK) Authentication for the Internet

Key Exchange Protocol (IKE). RFC 6617.

[36] Dan Harkins. 2014. Addressing A Side-Channel Attack on SAE. Re-

trieved 9 September 2018 from https://mentor.ieee.org/802.11/dcn/14/

11-14-0640-00-000m-side-channel-attack.docx.

[37] Dan Harkins. 2015. Dragonfly Key Exchange. RFC 7664.

[38] Dan Harkins. 2019. Secure Password Ciphersuites for Transport Layer Security

(TLS). RFC 8492. https://doi.org/10.17487/RFC8492

[39] Dan Harkins and G. Zorn. 2010. Extensible Authentication Protocol (EAP) Au-

thentication Using Only a Password. RFC 5931.

[40] Changhua He and John CMitchell. 2004. Analysis of the 802.1 i 4-WayHandshake.

In WiSe. ACM.

[41] Changhua He, Mukund Sundararajan, Anupam Datta, Ante Derek, and John C

Mitchell. 2005. A modular correctness proof of IEEE 802.11i and TLS. In CCS.
[42] Masashi Honma. 2015. [PATCH] mesh: Fix mesh SAE auth on low spec de-

vices. Retrieved 19 September 2018 fromhttp://lists.shmoo.com/pipermail/hostap/

2015-July/033304.html.

[43] IANA. 2018. Internet Key Exchange (IKE) Attributes. Last retrieved 12 November

2018 form https://www.iana.org/assignments/ipsec-registry/ipsec-registry.xml#

ipsec-registry-10.

[44] Thomas Icart. 2009. How to Hash into Elliptic Curves. In Proceedings of the 29th
Annual International Cryptology Conference on Advances in Cryptology (CRYPTO).

[45] IEEE Std 802.11. 2012. Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Spec.

[46] IEEE Std 802.11. 2012. Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Spec.

[47] IEEE Std 802.11s. 2011. Amendment 10: Mesh Networking.
[48] Kevin M. Igoe. 2012. [Cfrg] Status of DragonFly. Retrieved 8 November 2018

from https://www.ietf.org/mail-archive/web/cfrg/current/msg03258.html.

[49] Kevin M. Igoe. 2012. [Cfrg] Status of DragonFly. Retrieved 8 November 2018

from https://www.ietf.org/mail-archive/web/cfrg/current/msg03261.html.

[50] Kevin M. Igoe. 2012. Re: [Cfrg] Status of DragonFly. Retrieved 9 September 2018

from https://www.ietf.org/mail-archive/web/cfrg/current/msg03264.html.

[51] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2015.

Lucky 13 Strikes Back. In ASIA CCS.
[52] David P Jablon. 1996. Strong password-only authenticated key exchange. ACM

SIGCOMM Computer Communication Review 26, 5 (1996), 5–26.

[53] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. 2018. OPAQUE: An Asymmetric

PAKE Protocol Secure Against Pre-Computation Attacks. Cryptology ePrint

Archive, Report 2018/163. https://eprint.iacr.org/2018/163.

[54] P. Karn and W. Simpson. 1999. Photuris: Session-Key Management Protocol. RFC

2522.

[55] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. 2014. Internet Key

Exchange Protocol Version 2 (IKEv2). RFC 7296.

[56] Christopher P Kohlios and Thaier Hayajneh. 2018. A Comprehensive Attack

Flow Model and Security Analysis for Wi-Fi and WPA3. (2018).

[57] Bastian Könings, Florian Schaub, Frank Kargl, and Stefan Dietzel. 2009. Channel

switch and quiet attack: New DoS attacks exploiting the 802.11 standard. In LCN.
[58] Watson Ladd and Benjamin Kaduk. 2018. SPAKE2, a PAKE. Internet-Draft draft-

irtf-cfrg-spake2-07. Internet Engineering Task Force. https://datatracker.ietf.org/

doc/html/draft-irtf-cfrg-spake2-07 Work in Progress.

[59] Jean Lancrenon and Marjan Škrobot. 2015. On the Provable Security of the

Dragonfly Protocol. In Information Security. Springer International Publishing.
[60] Jouni Malinen. 2015. SAE: Increase security parameter k to 40 based on Dragonfly

recommendation. Hostap commit 4584b66eaecd.
[61] John Mitchell and Changhua He. 2005. Security Analysis and Improvements for

IEEE 802.11i. In NDSS.
[62] Robert Moskowitz. 2003. Weakness in Passphrase Choice in WPA Interface.

Retrieved 26 September 2018 from https://wifinetnews.com/archives/2003/11/

weakness_in_passphrase_choice_in_wpa_interface.html.

[63] Mozilla. 2019. Strict-Transport-Security - HTTP. Retrieved 3 Febru-

ary 2019 from https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/

Strict-Transport-Security.

[64] Yoav Nir, Tero Kivinen, Paul Wouters, and Daniel Migault. 2017. Algorithm

Implementation Requirements and Usage Guidance for the Internet Key Exchange

Protocol Version 2 (IKEv2). RFC 8247. https://doi.org/10.17487/RFC8247

[65] Rolf Oppliger. 1999. Protecting key exchange and management protocols against

resource clogging attacks. In Secure Information Networks. Springer, 163–175.
[66] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.

Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript

and their Implications. In CCS. ACM, 1406–1418.

https://mentor.ieee.org/802.11/dcn/17/11-17-1030-01-000m-sae-retry-timeout-clarification.docx
https://mentor.ieee.org/802.11/dcn/17/11-17-1030-01-000m-sae-retry-timeout-clarification.docx
http://www.kb.cert.org/vuls/id/871675
https://d2cpnw0u24fjm4.cloudfront.net/wp-content/uploads/WLPC_2019_WPA3-OWE-and-DDP_Hemant-Chaskar.pdf
https://d2cpnw0u24fjm4.cloudfront.net/wp-content/uploads/WLPC_2019_WPA3-OWE-and-DDP_Hemant-Chaskar.pdf
https://www.ietf.org/mail-archive/web/cfrg/current/msg02206.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg02206.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg03265.html
https://mailarchive.ietf.org/arch/msg/cfrg/WXyM6pHDjGRZXZzSc_HlERnp0Iw
https://mailarchive.ietf.org/arch/msg/cfrg/WXyM6pHDjGRZXZzSc_HlERnp0Iw
https://eprint.iacr.org/2017/1192
https://eprint.iacr.org/2017/1192
https://sourceforge.net/p/authsae/wiki/Home/
https://mentor.ieee.org/802.11/dcn/11-11-1411-01-000m-thwarting-side-channel-attacks.doc
https://mentor.ieee.org/802.11/dcn/11-11-1411-01-000m-thwarting-side-channel-attacks.doc
https://mentor.ieee.org/802.11/dcn/14/11-14-0640-00-000m-side-channel-attack.docx
https://mentor.ieee.org/802.11/dcn/14/11-14-0640-00-000m-side-channel-attack.docx
https://doi.org/10.17487/RFC8492
http://lists.shmoo.com/pipermail/hostap/2015-July/033304.html
http://lists.shmoo.com/pipermail/hostap/2015-July/033304.html
https://www.iana.org/assignments/ipsec-registry/ipsec-registry.xml#ipsec-registry-10
https://www.iana.org/assignments/ipsec-registry/ipsec-registry.xml#ipsec-registry-10
https://www.ietf.org/mail-archive/web/cfrg/current/msg03258.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg03261.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg03264.html
https://eprint.iacr.org/2018/163
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-spake2-07
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-spake2-07
https://wifinetnews.com/archives/2003/11/weakness_in_passphrase_choice_in_wpa_interface.html
https://wifinetnews.com/archives/2003/11/weakness_in_passphrase_choice_in_wpa_interface.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://doi.org/10.17487/RFC8247

Dragonblood: A Security Analysis of WPA3’s SAE Handshake

[67] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-

termeasures: The Case of AES. In CT-RSA.
[68] Trevor Perrin. 2013. [TLS] Question regarding CFRG process. Retrieved 29

October 2018 from https://www.ietf.org/mail-archive/web/tls/current/msg10962.

html.

[69] Trevor Perrin. 2013. [TLS] Review of Dragonfly PAKE. Retrieved 9 September

2018 from https://www.ietf.org/mail-archive/web/tls/current/msg10922.html.

[70] Eyal Ronen, Kenneth G. Paterson, and Adi Shamir. 2018. Pseudo Constant Time

Implementations of TLS Are Only Pseudo Secure. In CCS.
[71] Joseph Salowey. 2013. [TLS] Conclusion of WGLC draft-ietf-tls-

pwd. Retrieved 7 April from https://mailarchive.ietf.org/arch/msg/tls/

Fep2-E7xQX7OQKzfxOoFInVFtm4.

[72] Matthias Schulz, Francesco Gringoli, Daniel Steinmetzer, Michael Koch, and

Matthias Hollick. 2017. Massive reactive smartphone-based jamming using

arbitrary waveforms and adaptive power control. In WiSec. ACM, 111–121.

[73] Sam Scott, Nick Sullivan, and Christopher A. Wood. 2019. Hashing to Elliptic
Curves. Internet-Draft draft-irtf-cfrg-hash-to-curve-03. Internet Engineering Task
Force. https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-03

Work in Progress.

[74] S. Shin and K. Kobara. 2012. Efficient Augmented Password-Only Authentication

and Key Exchange for IKEv2. RFC 6628.

[75] SeongHan Shin, Kazukuni Kobara, and Hideki Imai. 2010. Security Proof of

AugPAKE. IACR Cryptology ePrint Archive 2010 (2010), 334.
[76] S. Smyshlyaev, E. Alekseev, I. Oshkin, and V. Popov. 2017. The Security Evaluated

Standardized Password-Authenticated Key Exchange (SESPAKE) Protocol. RFC

8133.

[77] Stanislav V. Smyshlyaev, Igor B. Oshkin, Evgeniy K. Alekseev, and Liliya R.

Ahmetzyanova. 2015. On the Security of One Password Authenticated Key

Exchange Protocol. Cryptology ePrint Archive, Report 2015/1237. https://eprint.

iacr.org/2015/1237.

[78] Michael Steiner, Gene Tsudik, and Michael Waidner. 1995. Refinement and

extension of encrypted key exchange. ACM SIGOPS Operating Systems Review
29, 3 (1995), 22–30.

[79] Rene Struik. 2013. [Cfrg] review of draft-irtf-dragonfly-02 (triggered by [TLS]

Working Group Last Call for draft-ietf-tls-pwd). Retrieved 9 November 2018 from

https://www.ietf.org/mail-archive/web/cfrg/current/msg03527.html.

[80] Rene Struik. 2013. Re: [Cfrg] small editorial error in and ques-

tion on draft-irtf-cfrg-dragonfly-01 (was: Re: CFRG meeting at IETF 87).

Retrieved 10 April 2019 from https://mailarchive.ietf.org/arch/msg/cfrg/

Z-nnOKTA4ddmFd17l5KzlRwWm5Y.

[81] D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Perrin. 2007. Using the Secure

Remote Password (SRP) Protocol for TLS Authentication. RFC 5054.

[82] Luke Valenta, David Adrian, Antonio Sanso, Shaanan Cohney, Joshua Fried,

Marcella Hastings, J. Alex Halderman, and Nadia Heninger. 2017. Measuring

small subgroup attacks against Diffie-Hellman. In 24th Annual Network and
Distributed System Security Symposium NDSS.

[83] Mathy Vanhoef, Nehru Bhandaru, Thomas Derham, Ido Ouzieli, and Frank

Piessens. 2018. Operating Channel Validation: Preventing Multi-Channel Man-

in-the-Middle Attacks Against Protected Wi-Fi Networks. In WiSec.
[84] Mathy Vanhoef and Frank Piessens. 2014. Advanced Wi-Fi attacks using com-

modity hardware. In ACSAC.
[85] Mathy Vanhoef and Frank Piessens. 2016. Predicting, Decrypting, and Abusing

WPA2/802.11 Group Keys. In USENIX Security.
[86] Mathy Vanhoef and Frank Piessens. 2017. Key Reinstallation Attacks: Forcing

Nonce Reuse in WPA2. In CCS.
[87] Mathy Vanhoef and Frank Piessens. 2018. Release the Kraken: new KRACKs in

the 802.11 Standard. In CCS.
[88] Wi-Fi Alliance. 2018. Wi-Fi Alliance introduces security enhancements.

Retrieved 6 April 2019 from https://www.wi-fi.org/news-events/newsroom/

wi-fi-alliance-introduces-security-enhancements.

[89] Wi-Fi Alliance. 2018. Wi-Fi Alliance introduces Wi-Fi certified WPA3 secu-

rity. Retrieved 6 April 2019 from https://www.wi-fi.org/news-events/newsroom/

wi-fi-alliance-introduces-wi-fi-certified-wpa3-security.

[90] Wi-Fi Alliance. 2018. WPA3 Specification Version 1.0. Retrieved 6 April 2019

from https://www.wi-fi.org/file/wpa3-specification-v10.

[91] WikiDevi. 2018. Semantic search: wireless routers. Last retrieved 14 November

2018 form https://wikidevi.com/.

[92] T. Wu. 2000. The SRP Authentication and Key Exchange System. RFC 2945.

[93] Thomas D Wu et al. 1998. The Secure Remote Password Protocol.. In NDSS,
Vol. 98. Citeseer, 97–111.

[94] Yuval Yarom. 2017. Mastik: A Micro-Architectural Side-Channel Toolkit. cs.

adelaide.edu.au/~yval/Mastik/Mastik.pdf.

[95] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A High Resolution, Low

Noise, L3 Cache Side-Channel Attack. In USENIX Sec.
[96] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2016. CacheBleed: A Timing

Attack on OpenSSL Constant Time RSA. In CHES (Lecture Notes in Computer
Science), Vol. 9813. Springer, 346–367.

[97] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. 2016. Return-Oriented Flush-

Reload Side Channels on ARM and Their Implications for Android Devices. In

CCS.

A EXPERIMENTS

No. of commit exchanges per second

U
til

iz
at

io
n

of
 r

es
ou

rc
e

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10

Target CPU
Attacker CPU
Total airtime

Figure 8: Clogging attack against a professional AP from
vendor A using curve P-521. The attacker uses a Raspberry
Pi 1 model B+, and its CPU usage is shown in the small
dashed line. The total amount of airtime consumed by all
SAE frames is shown in the long dashed line.

B SOURCE CODE
Listing 4: Side channel protected quadratic residue test.

1 static int is_quadratic_residue_blind(
2 struct sae_data *sae, const u8 *prime, size_t bits,
3 const struct crypto_bignum *qr,
4 const struct crypto_bignum *qnr,
5 const struct crypto_bignum *y_sqr)
6 {
7 struct crypto_bignum *r, *num;
8 int r_odd, check, res = -1;
9

10 /* Use the blinding technique to mask y_sqr while determining
11 * whether it is a quadratic residue modulo p to avoid leaking
12 * timing information while determining the Legendre symbol.
13 * v = y_sqr
14 * r = a random number between 1 and p-1, inclusive
15 * num = (v * r * r) modulo p
16 */
17 r = get_rand_1_to_p_1(prime, sae->tmp->prime_len, bits, &r_odd);
18 ...
19 if (r_odd) {
20 /* num = (num * qr) module p
21 * LGR(num, p) = 1 ==> quadratic residue */
22 if (crypto_bignum_mulmod(num, qr, sae->tmp->prime, num) < 0)
23 goto fail;
24 check = 1;
25 } else {
26 /* num = (num * qnr) module p
27 * LGR(num, p) = -1 ==> quadratic residue */
28 if (crypto_bignum_mulmod(num, qnr, sae->tmp->prime, num) < 0)
29 goto fail;
30 check = -1;
31 }
32 res = crypto_bignum_legendre(num, sae->tmp->prime);
33 ...
34 res = res == check;
35 ...

https://www.ietf.org/mail-archive/web/tls/current/msg10962.html
https://www.ietf.org/mail-archive/web/tls/current/msg10962.html
https://www.ietf.org/mail-archive/web/tls/current/msg10922.html
https://mailarchive.ietf.org/arch/msg/tls/Fep2-E7xQX7OQKzfxOoFInVFtm4
https://mailarchive.ietf.org/arch/msg/tls/Fep2-E7xQX7OQKzfxOoFInVFtm4
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-03
https://eprint.iacr.org/2015/1237
https://eprint.iacr.org/2015/1237
https://www.ietf.org/mail-archive/web/cfrg/current/msg03527.html
https://mailarchive.ietf.org/arch/msg/cfrg/Z-nnOKTA4ddmFd17l5KzlRwWm5Y
https://mailarchive.ietf.org/arch/msg/cfrg/Z-nnOKTA4ddmFd17l5KzlRwWm5Y
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-security-enhancements
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-security-enhancements
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-wi-fi-certified-wpa3-security
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-wi-fi-certified-wpa3-security
https://www.wi-fi.org/file/wpa3-specification-v10
https://wikidevi.com/
cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf
cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf

Mathy Vanhoef and Eyal Ronen

Listing 5: SAE password derivation using hash-to-curve.
1 static int sae_derive_pwe_ecc(
2 struct sae_data *sae, const u8 *addr1,
3 const u8 *addr2, const u8 *password,
4 size_t password_len, const char *identifier)
5 {
6 ...
7 if (random_get_bytes(dummy_password, dummy_password_len) < 0)
8 return -1;
9 ...
10 /* Create a random quadratic residue (qr) and quadratic
11 * non-residue (qnr) modulo p for blinding purposes during
12 * the loop.
13 */
14 if (get_random_qr_qnr(prime, prime_len, sae->tmp->prime, bits,
15 &qr, &qnr) < 0)
16 return -1;
17 ...
18 /* Continue for at least k iterations to protect against
19 * side-channel attacks that attempt to determine the number
20 * of iterations required in the loop.
21 */
22 for (counter = 1; counter <= k || !x; counter++) {
23 ...
24 res = sae_test_pwd_seed_ecc(sae, pwd_seed, prime
25 qr, qnr, &x_cand);
26 if (res < 0)
27 goto fail;
28 if (res > 0 && !x) {
29 ...
30 x = x_cand; /* saves the current x value */
31 ...
32 /* Use a dummy password for the following rounds,
33 * if any. */
34 addr[0] = dummy_password;
35 len[0] = dummy_password_len;
36 } else if (res > 0) {
37 crypto_bignum_deinit(x_cand, 1);
38 }
39 }
40 ...

Listing 6: Assembly output of SAE’s hash-to-curve method.
1 000000000002efe0 <sae_derive_pwe_ecc>:
2 ...
3 2f2c8: e8 f3 17 05 00 callq 80ac0 <sha256_prf_bits>
4 ...
5

6 2f719: e8 f2 fa 04 00 callq 7f210 <crypto_bignum_legendre>
7 ...
8 2f751: e8 1a f7 04 00 callq 7ee70 <crypto_bignum_deinit>
9 2f75d: 0f 85 59 01 00 00 jne 2f8bc <sae_derive_pwe_ecc+0x8dc>
10 ... /* handle qr case code range */
11 2f7d2: 0f 86 60 fa ff ff jbe 2f238 <sae_derive_pwe_ecc+0x258>
12 ...
13 /* start nqr case code */
14 2f8bc: 48 8b 7c 24 40 mov 0x40(%rsp),%rdi
15 2f8c1: be 01 00 00 00 mov $0x1,%esi
16 2f8c6: e8 a5 f5 04 00 callq 7ee70 <crypto_bignum_deinit>
17 2f8cb: e9 94 fa ff ff jmpq 2f364 <sae_derive_pwe_ecc+0x384>
18 /* end nqr case code */
19 ...

	Abstract
	1 Introduction
	1.1 Responsible Disclosure

	2 Background
	2.1 An Overview of WPA3
	2.2 WPA3-SAE Transition Mode
	2.3 Downgrade Protection

	3 The SAE ``Dragonfly'' Handshake
	3.1 Background and History
	3.2 Protocol Details
	3.3 Password Derivation
	3.4 Variants of Dragonfly

	4 Abusing SAE's Side-Channel Defenses
	4.1 Background on (Anti-)Clogging Methods
	4.2 Defeating SAE's Anti-Clogging
	4.3 Experiments
	4.4 Attack Optimizations
	4.5 Countermeasures

	5 Downgrade & Dictionary Attacks
	5.1 Downgrade to Dictionary Attack
	5.2 Attacking SAE's Group Negotiation
	5.3 Countermeasures

	6 Timing Attacks on MODP Groups
	6.1 Background
	6.2 Variable Number of Iterations
	6.3 Experiments
	6.4 Countermeasures and Discussion
	6.5 Applicability to Elliptic Curves

	7 Cache-Based Attacks on ECC groups
	7.1 Background and Attack Goal
	7.2 Attack Scenario
	7.3 Attacking the hostap Implementation
	7.4 Countermeasures and Discussion

	8 Password Partitioning
	8.1 Partitioning a Dictionary
	8.2 Prerequisites and Success Analysis
	8.3 Computational Requirements
	8.4 Brute-Force Attacks in the Cloud

	9 Related Work
	10 Conclusion and Recommendations
	Acknowledgments
	References
	A Experiments
	B Source Code

